5 research outputs found

    Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification

    Get PDF
    Automatic feature extraction and classification are two main tasks in abnormal ECG beat recognition. Feature extraction is an important prerequisite prior to classification since it provides the classifier with input features, and the performance of classifier depends significantly on the quality of these features. This study develops an effective method to extract low-dimensional ECG beat feature vectors. It employs wavelet multi-resolution analysis to extract time-frequency domain features and then applies principle component analysis to reduce the dimension of the feature vector. In classification, 12-element feature vectors characterizing six types of beats are used as inputs for one-versus-one support vector machine, which is conducted in form of 10-fold cross validation with beat-based and record-based training schemes. Tested upon a total of 107049 beats from MIT-BIH arrhythmia database, our method has achieved average sensitivity, specificity and accuracy of 99.09%, 99.82% and 99.70%, respectively, using the beat-based training scheme, and 44.40%, 88.88% and 81.47%, respectively, using the record-based training scheme

    Optimization-Based Artificial Bee Colony Algorithm for Data Collection in Large-Scale Mobile Wireless Sensor Networks

    Get PDF
    Data collection is a fundamental operation in various mobile wireless sensor networks (MWSN) applications. The energy of nodes around the Sink can be untimely depleted owing to the fact that sensor nodes must transmit vast amounts of data, readily forming a bottleneck in energy consumption; mobile wireless sensor networks have been designed to address this issue. In this study, we focused on a large-scale and intensive MWSN which allows a certain amount of data latency by investigating mobile Sink balance from three aspects: data collection maximization, mobile path length minimization, and network reliability optimization. We also derived a corresponding formula to represent the MWSN and proved that it represents an NP-hard problem. Traditional data collection methods only focus on increasing the amount data collection or reducing the overall network energy consumption, which is why we designed the proposed heuristic algorithm to jointly consider cluster head selection, the routing path from ordinary nodes to the cluster head node, and mobile Sink path planning optimization. The proposed data collection algorithm for mobile Sinks is, in effect, based on artificial bee colony. Simulation results show that, in comparison with other algorithms, the proposed algorithm can effectively reduce data transmission, save energy, improve network data collection efficiency and reliability, and extend the network lifetime

    Data Fusion Algorithm for Heterogeneous Wireless Sensor Networks Based on Extreme Learning Machine Optimized by Particle Swarm Optimization

    No full text
    Data fusion can reduce the data communication time between sensor nodes, reduce energy consumption, and prolong the lifetime of the network, making it an important research focus in the field of heterogeneous wireless sensor networks (HWSNs). Normal sensor nodes are susceptible to external environmental interferences, which affect the measurement results. In addition, raw data contain redundant information. The transmission of redundant information consumes excess energy, thereby reducing the lifetime of the network. We propose a data fusion method based on an extreme learning machine optimized by particle swarm optimization for HWSNs. The spatiotemporal correlation between the data of the HWSNs is determined, and the extreme learning machine method is used to process the data collected by the sensor nodes in the hierarchical routing structure of the HWSN. The particle swarm optimization algorithm is used to optimize the input weight matrix and the hidden layer bias of the extreme learning machine. An output weight matrix is created to reduce the number of hidden layer nodes and improve the generalization ability of the model. The data fusion model fuses the original data collected by the sensor nodes. The simulation results show that the proposed algorithm reduces network energy consumption and improves the lifetime of the network, the efficiency of data fusion, and the reliability of data transmission compared with other data fusion methods

    New principle for busbar protection based on the Euclidean distance algorithm.

    No full text
    A new fast busbar protection algorithm based on the comparison of the similarity of back-wave waveforms is proposed in this paper. The S-transform is performed on the back-wave from each defected transmission line connected to the busbar, and the protection criterion is thus constructed by using the Euclidean distance to analyze the similarity of the back-waves, with the implementation of the S-transform between the transmission lines. When a fault occurs internally on the busbar, the Euclidean distance of the S-transformed back-wave between each associated transmission line is small, and there is a remarkable similarity between the waveform. When a fault occurs externally on the busbar, the Euclidean distance of the S-transformed backward traveling wave between the faulty line and the nonfaulty line is larger than that between the nonfaulty lines. The wave-forms of the faulty line and the nonfaulty line bear little similarity, while there is a striking similarity between the nonfaulty lines. Therefore, a protection criterion is established according to the ratio between the maximal similarity and the minimal similarity to discriminate the internal and external faults of the busbar zones. The simulation results show that the proposed busbar protection method can discriminate the internal and external faults of busbar zones in a sensitive and reliable way
    corecore